Taq DNA Polymerase E (high efficiency)
Advantages at a glance
- stable at RT (+15 to +30°C) for at least 2 weeks
- high product yield
- processes up to >7kb
- extension rate: 2-4kb/min at 72°C
- extra addition of A
Ready to ship today,
Delivery time 1-2 workdays
Shipment: on wet ice. Store at -20°C. For laboratory usage only!
High-quality Taq DNA Polymerase from Genaxxon is a highly processive 5' - 3' DNA Polymerase, lacking 3' - 5' exonuclease activity. The high processivity and fidelity of Genaxxon bioscience Taq Polymerase allows amplification of DNA fragment of >7 kb. Genaxxon bioscience Taq Polymerase is delivered with 10X reaction buffer and separate MgCL2.The enzyme is delivered with our buffer component 'Buffer-E'. The buffer is optimised for high yield amplification of DNA-templates. Our complete buffer contains 25mM MgCl2.
Taq DNA Polymerase test sample available! No shipping costs within Germany.
With our high quality dNTPs as Set (M3015.4100 and M3015.0250) or Mix (M3016.1010) or our DNA Ladders and our favourable standard agarose (M3044) we can offer additional high quality products for your PCR.
Product Specifications
Concentration: 5 units/µL
Substrate analogs: dNTP, ddNTP, fluorescent dNTP/ddNTP
Extension rate: 2-4 kb/min. at 72°C
Half-life: 20min. at 95°C, 60min. at 94°C
5’-3’ exonuclease activity: Yes
Extra addition of A: Yes
3’-5’ exonuclease activity: No
Nuclease contamination: No
Protease contamination: No
RNase contamination: No
Self-priming activity: No
Sicherheits Hinweise / Safety
Klassifizierungen / Classification
eclass-Nr: 32-16-05-02
Documents:
Safety Data SheetProtocols
Certificate
Manuals
Category List
Source: NCBI PubMed
Quelle/Source: NCBI PubMed >
Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt
Aman Ullah Khan, Waleed S. Shell, Falk Melzer, Ashraf E. Sayour, Eman Shawkat Ramadan, Mandy C. Elschner, Amira A. Moawad, Uwe Roesler, Heinrich Neubauer, Hosny El-Adawy
Microorganisms. 2019 Dec; 7(12): 603. Published online 2019 Nov 22. doi: 10.3390/microorganisms7120603
PMCID: PMC6955977
Metabolic Engineering of Escherichia coli for para-Amino-Phenylethanol and para-Amino-Phenylacetic Acid Biosynthesis
Behrouz Mohammadi Nargesi, Georg A. Sprenger, Jung-Won Youn
Front Bioeng Biotechnol. 2018; 6: 201. Published online 2019 Jan 4. doi: 10.3389/fbioe.2018.00201
PMCID: PMC6328984
Genome-wide polyadenylation site mapping datasets in the rice blast fungus Magnaporthe oryzae
Marco Marconi, Ane Sesma, Julio Luis Rodríguez-Romero, María Lourdes Rosano González, Mark D. Wilkinson
Sci Data. 2018; 5: 180271. Published online 2018 Nov 27. doi: 10.1038/sdata.2018.271
PMCID: PMC6257040
Blasticidin-S deaminase, a new selection marker for genetic transformation of the diatom Phaeodactylum tricornutum
Jochen M. Buck, Carolina Río Bártulos, Ansgar Gruber, Peter G. Kroth
PeerJ. 2018; 6: e5884. Published online 2018 Nov 14. doi: 10.7717/peerj.5884
PMCID: PMC6250098
Julian Lange, Eugenia Münch, Jan Müller, Tobias Busche, Jörn Kalinowski, Ralf Takors, Bastian Blombach
Genes (Basel) 2018 Jun; 9(6): 297. Published online 2018 Jun 13. doi: 10.3390/genes9060297
PMCID: PMC6027265
Hosny El-Adawy, Herbert Bocklisch, Heinrich Neubauer, Hafez Mohamed Hafez, Helmut Hotzel
Ir Vet J. 2018; 71: 5. Published online 2018 Feb 5. doi: 10.1186/s13620-018-0116-2
PMCID: PMC5799919
Juliane Havlicek, Eric Rivera-Milla, Peter Slickers, Sönke Andres, Silke Feuerriegel, Stefan Niemann, Matthias Merker, Ines Labugger
PLoS One. 2017; 12(8): e0183561. Published online 2017 Aug 29. doi: 10.1371/journal.pone.0183561
PMCID: PMC5574540
The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome
Coral González-Prieto, Richard Gabriel, Christoph Dehio, Manfred Schmidt, Matxalen Llosa
Appl Environ Microbiol. 2017 Jun 15; 83(12): e00207-17. Prepublished online 2017 Apr 14. Published online 2017 May 31. doi: 10.1128/AEM.00207-17
PMCID: PMC5452801
Genetic alterations in seborrheic keratoses
Barbara Heidenreich, Evygenia Denisova, Sivaramakrishna Rachakonda, Onofre Sanmartin, Timo Dereani, Ismail Hosen, Eduardo Nagore, Rajiv Kumar
Oncotarget. 2017 May 30; 8(22): 36639–36649. Published online 2017 Mar 30. doi: 10.18632/oncotarget.16698
PMCID: PMC5482683
Rafat Amin, Mirita Franz-Wachtel, Yvonne Tiffert, Martin Heberer, Mohamed Meky, Yousra Ahmed, Arne Matthews, Sergii Krysenko, Marco Jakobi, Markus Hinder, Jane Moore, Nicole Okoniewski, Boris Maček, Wolfgang Wohlleben, Agnieszka Bera
Front Mol Biosci. 2016; 3: 38. Published online 2016 Aug 9. doi: 10.3389/fmolb.2016.00038
PMCID: PMC4977719
Gyu-Sung Cho, Felix Ritzmann, Marie Eckstein, Melanie Huch, Karlis Briviba, Diana Behsnilian, Horst Neve, Charles M. A. P. Franz
Front Microbiol. 2016; 7: 658. Published online 2016 May 9. doi: 10.3389/fmicb.2016.00658
PMCID: PMC4860493
Adnan Shah, Bernhard J. Eikmanns
PLoS One. 2016; 11(4): e0154382. Published online 2016 Apr 27. doi: 10.1371/journal.pone.0154382
PMCID: PMC4847777
Huaping Xie, P. Sivaramakrishna Rachakonda, Barbara Heidenreich, Eduardo Nagore, Antje Sucker, Kari Hemminki, Dirk Schadendorf, Rajiv Kumar
Oncotarget. 2016 Mar 29; 7(13): 16490–16504. Published online 2016 Feb 19. doi: 10.18632/oncotarget.7503
PMCID: PMC4941330
DNase-Sensitive and -Resistant Modes of Biofilm Formation by Listeria monocytogenes
Marion Zetzmann, Mira Okshevsky, Jasmin Endres, Anne Sedlag, Nelly Caccia, Marc Auchter, Mark S. Waidmann, Mickaël Desvaux, Rikke L. Meyer, Christian U. Riedel
Front Microbiol. 2015; 6: 1428. Published online 2015 Dec 22. doi: 10.3389/fmicb.2015.01428
PMCID: PMC4686886
Britta Hansmann, Jens-Michael Schröder, Ulrich Gerstel
PLoS Pathog. 2015 Sep; 11(9): e1005159. Published online 2015 Sep 15. doi: 10.1371/journal.ppat.1005159
PMCID: PMC4570713
Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning
Andrey Fadeev, Jana Krauss, Hans Georg Frohnhöfer, Uwe Irion, Christiane Nüsslein-Volhard
eLife. 2015; 4: e06545. Published online 2015 Apr 27. doi: 10.7554/eLife.06545Includes additional comments & authors
PMCID: PMC4446668
Christoph-Martin Geilfus, Dietrich Ober, Lutz A. Eichacker, Karl Hermann Mühling, Christian Zörb
J Biol Chem. 2015 May 1; 290(18): 11235–11245. Published online 2015 Mar 6. doi: 10.1074/jbc.M114.619718
PMCID: PMC4416831
Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe
Anke C. Stöhr, Alberto López-Bueno, Silvia Blahak, Maria F. Caeiro, Gonçalo M. Rosa, António Pedro Alves de Matos, An Martel, Alí Alejo, Rachel E. Marschang
PLoS One. 2015; 10(2): e0118633. Published online 2015 Feb 23. doi: 10.1371/journal.pone.0118633
PMCID: PMC4338083
The Staphylococcus aureus NuoL-Like Protein MpsA Contributes to the Generation of Membrane Potential
Sonja Mayer, Wojtek Steffen, Julia Steuber, Friedrich Götz
J Bacteriol. 2015 Mar; 197(5): 794–806. Prepublished online 2014 Dec 1. Published online 2015 Feb 4. doi: 10.1128/JB.02127-14
PMCID: PMC4325100
Transcriptional landscape and essential genes of Neisseria gonorrhoeae
Christian W. Remmele, Yibo Xian, Marco Albrecht, Michaela Faulstich, Martin Fraunholz, Elisabeth Heinrichs, Marcus T. Dittrich, Tobias Müller, Richard Reinhardt, Thomas Rudel
Nucleic Acids Res. 2014 Sep 15; 42(16): 10579–10595. Published online 2014 Aug 20. doi: 10.1093/nar/gku762
PMCID: PMC4176332
Anna K Beike, Mark von Stackelberg, Mareike Schallenberg-Rüdinger, Sebastian T Hanke, Marie Follo, Dietmar Quandt, Stuart F McDaniel, Ralf Reski, Benito C Tan, Stefan A Rensing
BMC Evol Biol. 2014; 14: 158. Published online 2014 Jul 11. doi: 10.1186/1471-2148-14-158
PMCID: PMC4227049
Katrin Gottlieb, Christoph Albermann, Georg A Sprenger
Microb Cell Fact. 2014; 13: 96. Published online 2014 Jul 11. doi: 10.1186/s12934-014-0096-1
PMCID: PMC4227036
Molecular Typing of MRSA and of Clinical Staphylococcus aureus Isolates from Iaşi, Romania
Stefan Monecke, Elke Müller, Olivia Simona Dorneanu, Teodora Vremeră, Ralf Ehrich
PLoS One. 2014; 9(5): e97833. Published online 2014 May 20. doi: 10.1371/journal.pone.0097833
PMCID: PMC4028265
Bioelectric Signaling Regulates Size in Zebrafish Fins
Simon Perathoner, Jacob M. Daane, Ulrike Henrion, Guiscard Seebohm, Charles W. Higdon, Stephen L. Johnson, Christiane Nüsslein-Volhard, Matthew P. Harris
PLoS Genet. 2014 Jan; 10(1): e1004080. Published online 2014 Jan 16. doi: 10.1371/journal.pgen.1004080
PMCID: PMC3894163
Ute Armbruster, Thilo Rühle, Renate Kreller, Christoph Strotbek, Jessica Zühlke, Luca Tadini, Thomas Blunder, Alexander P. Hertle, Yafei Qi, Birgit Rengstl, Jörg Nickelsen, Wolfgang Frank, Dario Leister
Plant Cell. 2013 Oct; 25(10): 3926–3943. Published online 2013 Oct 4. doi: 10.1105/tpc.113.114785
PMCID: PMC3877787
Variants at the 9p21 locus and melanoma risk
Livia Maccioni, Panduranga Sivaramakrishna Rachakonda, Justo Lorenzo Bermejo, Dolores Planelles, Celia Requena, Kari Hemminki, Eduardo Nagore, Rajiv Kumar
BMC Cancer. 2013; 13: 325. Published online 2013 Jul 2. doi: 10.1186/1471-2407-13-325
PMCID: PMC3702420
Phylogenetic and Molecular Analysis of Food-Borne Shiga Toxin-Producing Escherichia coli
Elisabeth Hauser, Alexander Mellmann, Torsten Semmler, Helen Stoeber, Lothar H. Wieler, Helge Karch, Nikole Kuebler, Angelika Fruth, Dag Harmsen, Thomas Weniger, Erhard Tietze, Herbert Schmidt
Appl Environ Microbiol. 2013 Apr; 79(8): 2731–2740. doi: 10.1128/AEM.03552-12
PMCID: PMC3623172
Wolfgang Müller, Helmut Hotzel, Peter Otto, Axel Karger, Barbara Bettin, Herbert Bocklisch, Silke Braune, Ulrich Eskens, Stefan Hörmansdorfer, Regina Konrad, Anne Nesseler, Martin Peters, Martin Runge, Gernot Schmoock, Bernd-Andreas Schwarz, Reinhard Sting, Kerstin Myrtennäs, Edvin Karlsson, Mats Forsman, Herbert Tomaso
BMC Microbiol. 2013; 13: 61. Published online 2013 Mar 21. doi: 10.1186/1471-2180-13-61
PMCID: PMC3663675
Evgeny A. Moskalev, Robert Stöhr, Ralf Rieker, Simone Hebele, Florian Fuchs, Horia Sirbu, Sergey E. Mastitsky, Carsten Boltze, Helmut König, Abbas Agaimy, Arndt Hartmann, Florian Haller
Virchows Arch. 2013 Apr; 462(4): 409–419. Published online 2013 Mar 7. doi: 10.1007/s00428-013-1376-6
PMCID: PMC3624006
An efficient method for genome-wide polyadenylation site mapping and RNA quantification
Stefan Wilkening, Vicent Pelechano, Aino I. Järvelin, Manu M. Tekkedil, Simon Anders, Vladimir Benes, Lars M. Steinmetz
Nucleic Acids Res. 2013 Mar; 41(5): e65. Published online 2013 Jan 7. doi: 10.1093/nar/gks1249Correction in: Nucleic Acids Res. 2013 Jul; 41(12): 6370.
PMCID: PMC3597643
Characterization of a mazEF Toxin-Antitoxin Homologue from Staphylococcus equorum
Christopher F. Schuster, Jung-Ho Park, Marcel Prax, Alexander Herbig, Kay Nieselt, Ralf Rosenstein, Masayori Inouye, Ralph Bertram
J Bacteriol. 2013 Jan; 195(1): 115–125. doi: 10.1128/JB.00400-12
PMCID: PMC3536171
Anna C. Shore, Emily C. Deasy, Peter Slickers, Grainne Brennan, Brian O'Connell, Stefan Monecke, Ralf Ehricht, David C. Coleman
Antimicrob Agents Chemother. 2011 Aug; 55(8): 3765–3773. doi: 10.1128/AAC.00187-11
PMCID: PMC3147645
Dimitrios Loukovitis, Elena Sarropoulou, Costas S. Tsigenopoulos, Costas Batargias, Antonios Magoulas, Apostolos P. Apostolidis, Dimitrios Chatziplis, Georgios Kotoulas
PLoS One. 2011; 6(1): e16599. Published online 2011 Jan 31. doi: 10.1371/journal.pone.0016599
PMCID: PMC3031595
Tobias J. Erb, Lena Frerichs-Revermann, Georg Fuchs, Birgit E. Alber
J Bacteriol. 2010 Mar; 192(5): 1249–1258. Published online 2010 Jan 4. doi: 10.1128/JB.01267-09
PMCID: PMC2820834
M.M. Aveskamp, J. de Gruyter, J.H.C. Woudenberg, G.J.M. Verkley, P.W. Crous
Stud Mycol. 2010; 65: 1–60. doi: 10.3114/sim.2010.65.01
PMCID: PMC2836210
T. Slanec, A. Fruth, K. Creuzburg, H. Schmidt
Appl Environ Microbiol. 2009 Oct; 75(19): 6187–6197. Published online 2009 Aug 14. doi: 10.1128/AEM.00874-09
PMCID: PMC2753087
Felix Grewe, Prisca Viehoever, Bernd Weisshaar, Volker Knoop
Nucleic Acids Res. 2009 Aug; 37(15): 5093–5104. Published online 2009 Jun 23. doi: 10.1093/nar/gkp532
PMCID: PMC2731911
Matthias Sanetra, Frederico Henning, Shoji Fukamachi, Axel Meyer
Genetics. 2009 May; 182(1): 387–397. doi: 10.1534/genetics.108.089367
PMCID: PMC2674835
Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype
J.H.C. Woudenberg, M.M. Aveskamp, J. de Gruyter, A.G. Spiers, P.W. Crous
Persoonia. 2009 Jun; 22: 56–62. Published online 2009 Mar 3. doi: 10.3767/003158509X427808
PMCID: PMC2789541
Jos Houbraken, János Varga, Emilia Rico-Munoz, Shawn Johnson, Robert A. Samson
Appl Environ Microbiol. 2008 Mar; 74(5): 1613–1619. Published online 2008 Jan 11. doi: 10.1128/AEM.01761-07
PMCID: PMC2258620
Kristina Creuzburg, Herbert Schmidt
J Clin Microbiol. 2007 Aug; 45(8): 2498–2507. Published online 2007 Jun 6. doi: 10.1128/JCM.00038-07
PMCID: PMC1951211
Nuclear Factor I X Deficiency Causes Brain Malformation and Severe Skeletal Defects
Katrin Driller, Axel Pagenstecher, Markus Uhl, Heymut Omran, Ansgar Berlis, Albert Gründer, Albrecht E. Sippel
Mol Cell Biol. 2007 May; 27(10): 3855–3867. Published online 2007 Mar 12. doi: 10.1128/MCB.02293-06
PMCID: PMC1899988
Kristian M. Müller, Sabine C. Stebel, Susanne Knall, Gregor Zipf, Hubert S. Bernauer, Katja M. Arndt
Nucleic Acids Res. 2005; 33(13): e117. Published online 2005 Aug 1. doi: 10.1093/nar/gni116
PMCID: PMC1182171
For every template/primer pair, the optimal reaction conditions have to be evaluated empirically, changing the primer/template
ratio, the ionic strength (with MgSO4) and the cycle parameters (time and temperatures).
DNA Template
Amplification of templates with high GC content, strong secondary structure, low concentrations, or which produce products greater than 5 kb, may require adaptation of the following parameters:
- Use high quality, purified DNA templates.
- Approximately 10E4 copies of target DNA are required to detect product in 25-30 PCR cycles.
- Use 1pg–1ng of plasmid or viral templates.
- Use 1ng–1µg of genomic templates.
- Higher DNA concentrations decrease amplicon specificity (i.e., extra bands are more likely), particularly when a large number of cycles are employed.
- Use the higher DNA concentrations when fewer cycles are desired (e.g. to increase fidelity).
- Generally 20-30 nucleotides in length.
- Ideal GC content is 40-60%.
- Space GC residues evenly within the primer.
- Primer pairs should have Tms within 5°C of each other.
- Avoid secondary structure (i.e., hairpins) within each primer and potential dimerization between the primers present.
- When engineering sites into the end of primers, 4-6 extra bases should be added 5´ to the site.
- Final concentration should be 0.05-1 µM, typically 0.1-0.5 µM of each primer.
- Higher concentrations may increase secondary priming and create spurious amplification products.
Magnesium Concentration
- 1.5-2.0 mM is optimal for Taq DNA Polymerase, but the ideal concentration depends on template, buffer, DNA and dNTPs (each has the potential to chelate magnesium).
- If [Mg2+] is too low, no PCR product will be seen.
- If [Mg2+] is too high, undesired PCR products may be seen.
Deoxyribonucleotide triphosphates (dNTPs) >
- Typical concentration is 200 µM of each dNTP.
- 50-100 µM enhances fidelity of polymerization, but reduces yields.
- Higher concentrations increase yields particularly in long PCR, but can reduce fidelity.
DNA Polymerase
- The choice of the correct polymerase depends among other things on the purpose as well as on the template used (standard PCR: Taq DNA Polymerase S > with high accuracy, Taq Polymerase E > with high yield; master mixes: Standard PCR master mix > or RedMasterMix > with red dye).
- For multiplex PCR, there exist special multiplex master mixes >.
- Hot start applications are recommended to increase specificity or if you use difficult templates. For this purpose there exist special Hot Start Polymerases >.
- For PCRs for the purpose of cloning or other procedures requiring a low error rate, there are thermostable high fidelity proofing polymerases such as Pfunds >, ExactRun >, ReproFast >, or ReproHot (KOD) Proofreading Polymerase >. These enzymes make far fewer errors during amplification and increase the chances of an amplicon without mistakes.
- For genotyping and other applications where a high discrimination rate is required, there is a new highly selective DNA polymerase, SNP Pol DNA Polymerase >. It specifically distinguishes mismatched primer-template complexes and ony produces specific amplicons in case of perfectly matched primer pairs.
- For the real-time quantitative PCR > there exist highly specialized qPCR master mixes. Hereby, the choice of the correct master mix depends on the qPCR device you are using. It is important to determine whether and how much ROX should be contained in the qPCR master mix and whether it should be a qPCR green master mix with green fluorescent dye > or a qPCR probe master mix > without a fluorescent dye. A new lyophilized qPCR probe master mix in beads format, which is stable at room temperature, is available from Genaxxon (LyoBalls >).
- The amount of DNA polymerase used in the PCR reaction can significantly influence the PCR result (use 1.25-1.5 units Taq Polymerase > for a 50μL volume).
General Guidelines
Annealing Temperature and Duration
- Match the Tms within 5°C of each other.
- Typical annealing temperatures are 5°C below the lowest primer's Tm and often fall in the range of 50-60°C.
- Test higher annealing temperatures if spurious amplification products are observed.
- Typical annealing times are 15-30 seconds.
Extension Time
- Extensions are normally performed at 68°C.
- In general, use extension times of one minute per 1000 base (1 kb) pairs (e.g. 3 minutes for a 3 kb product).
- For products less than 1 kb, use 45-60 seconds.
- Products greater than 3 kb, or reactions using more than 30 cycles, may require longer extensions.
The amplification of templates with high GC content, strong secondary structures, low concentrations or amplicons more than 5 kb often require optimization of the PCR conditions. Typically, 15-30 seconds of denaturation should be performed at 95 ° C during PCR.